On Kronecker limit formula for real quadratic fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Kronecker limit formulas for real quadratic fields

Let ζ(s,C) be the partial zeta function attached to a ray class C of a real quadratic field. We study this zeta function at s = 1 and s = 0, combining some ideas and methods due to Zagier and Shintani. The main results are (1) a generalization of Zagier’s formula for the constant term of the Laurent expansion at s = 1, (2) some expressions for the value and the first derivative at s = 0, relate...

متن کامل

A Kronecker Limit Formula for Totally Real Fields and Arithmetic Applications

We establish a Kronecker limit formula for the zeta function ζF (s,A) of a wide ideal class A of a totally real number field F of degree n. This formula relates the constant term in the Laurent expansion of ζF (s,A) at s = 1 to a toric integral of a SLn(Z)-invariant function logG(Z) along a Heegner cycle in the symmetric space of GLn(R). We give several applications of this formula to algebraic...

متن کامل

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

Real Quadratic Number Fields

a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...

متن کامل

A Conjectural Product Formula for Brumer–Stark Units over Real Quadratic Fields

Following methods of Hayes, we state a conjectural product formula for ratios of Brumer–Stark units over real quadratic fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1976

ISSN: 0386-2194

DOI: 10.3792/pja/1195518272